COURSE OUTCOMES (Cos):

Course Out Come B.Sc. Mathematics		
SEM-I Differential and integral calculus		
CO1	Functions of two variables, limit of function of two variables, partial	
	derivatives	
CO2	Theorems on total differentials, composite functions, differentiate of	
	composite functions	
CO3	Definition of curvature	
CO4	Lenth of place curves	
CO5	Volume and surface revolution	
SEM-II : DIFFERENTIAL EQUATIONS		
CO1	Differential equation of first order and first degree	
CO2	Differential equation of first order but not first degree	
CO3	Higher order linear differential equation	
CO4	Partial Differential Equation	
SEM-III REAL ANALYSIS		
CO1	Sequences: Limits of Sequences- A Discussion about Proofs-Limit	
	Theorems for SequencesMonotone Sequences and Cauchy Sequences -	
	Subsequences-Limit sup's and Limit inf's - SeriesAlternating Series and	
	Integral Tests	
CO2	Continuity: Continuous Functions - Properties of Continuous Functions -	
	Uniform Continuity - Limits of Functions	
CO3	Differentiation: Basic Properties of the Derivative - The Mean Value	
	Theorem - L'Hospital Rule - Taylor's Theorem.	
CO4	Integration: The Riemann Integral - Properties of Riemann Integral-	
	Fundamental Theorem of Calculus.	
SEM-IV ALGEBRA		
CO1	Groups: Definition and Examples of Groups- Elementary Properties of	
	Groups-Finite Groups - Subgroups - Terminology and Notation - Subgroup	
	Tests - Examples of Subgroups. Cyclic Groups: Properties of Cyclic	
	Groups - Classification of Subgroups Cyclic Groups.	
CO2	Definition and Notation -Cycle Notation-Properties of Permutations -A	
	Check Digit Scheme Based on D5. Isomorphisms ; Motivation- Definition	
	and Examples - Cayley's Theorem Properties of Isomorphisms -	
	Automorphisms-Cosets and Lagrange's Theorem Properties of Cosets	
	138 - Lagrange's Theorem and Consequences-An Application of Cosets	
	to Permutation Groups - The Rotation Group of a Cube and a Soccer Ball.	
CO3	Normal Subgroups and Factor Groups: Normal Subgroups-Factor Groups	
	-Applications of Factor Groups -Group Homomorphisms - Definition and	
	Examples -Properties of Homomorphisms -The First Isomorphism	

	Theorem
CO4	Introduction to Rings: Motivation and Definition -Examples of Rings -
	Properties of Rings - Subrings. Integral Domains: Definition and
	Examples - Fields Characteristics of a Ring
CO5	Ideals and Factor Rings: Ideals -Factor Rings -Prime Ideals and Maximal
	Ideals. Ring Homomorphisms: Definition and Examples-Properties of
	RingHomomorphisms.
SEM-V LINEAR ALGEBRA	
CO1	Vector spaces
CO2	Rank-Change of basis
CO3	Diagonalization
CO4	Orthogonality and least square
SEM-VI INTEGRAL TRANSFORMS	
CO1	Solution of algebrai and transcendental equations
CO2	Interpolation polynomial
CO3	Newton's integration and differentiation
CO4	Solution of differentiation equations by numerical methods